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ABSTRACT

The cyclic constitutive behaviour of aluminium 7050 under elstoplastic deforma-
tion has been investigated in this report. Experiments were performed under strain-
controlled and stress-controlled cyclic loading, respectively, with a view to quantify
the phenomena of mean stress relaxation and strain ratchetting. To mathematically
describe the experimentally observed cyclic stress-strain behaviour, the framework of
constitutive theory for rate-independent plasticity has been reviewed and the state-of-
art development in the field summarised. A detailed discussion has been presented for
a class of constitutive models which uses nonlinear differential equations to describe
the kinematic hardening, using a single back stress or multiple back stresses.

Using the available steady-state experimental data, the material constants in the
model have been identified. A comparison to the experimental results shows that the
model can provide very good representation of the material stress—strain behaviour
under cyclic loading, in terms of the general shape of hysteresis loops. A numerical
procedure for determining the notch-root stress and strain from the applied remote
stress or strain has also been developed. The significance of strain ratchetting on the
prediction of fatigue crack initiation and growth life has also been discussed.

Further study is needed to improve the accuracy of prediction in the rate of stress
relaxation.

APPROVED FOR PUBLIC RELEASE

DEPARTMENT OF DEFENCE

¢

DEFENCE SCIENCE AND TECHNOLOGY ORGANISATION

]



DSTO-RR-0153

Published by

DSTO Aeronautical and Maritime Research Laboratory
506 Lorimer St,
Fishermens Bend, Victoria, Australia 3207

Telephone: (03) 9626 7000
Facsimile: (03) 9626 7999

© Commonwealth of Australia 1999
AR No. AR 010-989
June 1999

APPROVED FOR PUBLIC RELEASE



DSTO-RR-0153

Analysis of Cyclic Mean Stress Relaxation and Strain Ratchetting
Behaviour of Aluminium 7050

EXECUTIVE SUMMARY

In predicting fatigue life of components or structures, using either the local strain-based ap-
proach for crack initiation or the fracture mechanics-based approach for crack growth, an impor-
tant input to the analysis is the material stress-strain response, or the constitutive relation, which
predicts the current stress from a given strain history, at the point of interest. From a prescribed
remote load history and a selected rule linking the remote load to the locate stress/strain at geomet-
rical discontinuities such as a notch root, the constitutive mode] dictates the resulting hysteresis
loops, and hence the corresponding damage incurred. It is, therefore, important that the constitu-
tive relation adopted for a fatigue life model reflect the actual material behaviour as accurately as
possible. This has been, however, restricted in the past by the demand on computing resources.

In this report, the transient cyclic stress-strain behaviour of aluminium 7050 has been studied
experimentally and numerically. The results from strain- and stress-controlled tests demonstrated
various phenomena such as the progressive relaxation of mean stress, the shakedown state when
the mean stress approaches zero, the transient ratchetting, and the continuous ratchetting (plastic
deformation) under certain cyclic stress loading. Within the framework of nonlinear kinematic
hardening theory, a mathematical model has been developed and the material constants deter-
mined. The numerical results from the model correlate well with the experimental data when
multiple back stresses are adopted. A numerical procedure has also been developed to determine
the notch-root stress/strain from the given remote loading history, which can then be implemented
in fatigue life prediction software such as CI89.

The results of this research now provide an improved capability in fatigue life assessment,
especially for loading spectra dominated by overloads.
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NOMENCLATURE

© Stress tensor

G Stress rate tensor

€ Strain tensor

€° Elastic strain tensor

€P Plastic strain tensor

€ Strain rate tensor

€ Plastic strain rate tensor

S Deviatoric stress tensor

X Back stress tensor

X Back stress rate tensor

N Normal to the yield surface

E Elasticity tensor

f Yield surface

h Hardening modulus function

¢ General yield function

J> von Mises yield function

€P Uniaxial plastic strain

R Isotropic hardening parameter

b,R; Material constants for isotropic hardening
k;,k; Material constants for kinematic hardening
p Equivalent plastic strain

P Equivalent plastic strain rate

A Plastic multiplier

h Hardening modulus

v A sign function depending on the direction of the plastic flow
Z Uniaxial back stress

6 Uniaxial stress
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€ Uniaxial strain

Ac Uniaxial stress range

Age Uniaxial strain range

AgP Plastic strain range

E Young’s modulus

Gp Stress at the turning point

€ Strain at the turning point

s Uniaxial remote stress

e Uniaxial remote strain

sp Uniaxial remote stress at the turning point

ep Uniaxial remote strain at the turning point
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1 Introduction

For mechanical components subjected to asymmetric cyclic loading leading to plastic strain,
most materials exhibit the phenomenon of either mean stress relaxation or strain ratchetting, or a
combination of the two, depending on the applied load and structure geometry. If the maximum
and minimum strains are fixed, then stress relaxation will occur. The initially non-zero mean stress
will progressively shift towards zero as cyclic loading is applied, as sketched in Figurela. This is
analogous to stress relaxation under monotonic loading with fixed strain, except it is induced by
the cyclic loading rather than the elapsed time. On the other hand, if the maximum and minimum
stresses are controlled, then the so called strain ratchetting will take place, as shown schematically
in Figurelb. Again, this is similar to creep under constant monotonic stress, but it is caused by
the cyclic straining and the existence of a non-zero mean stress. Both strain ratchetting and mean
stress relaxation are characterised by unclosed hysteresis loops, and plastic shakedown refers to
the steady state reached after a certain number of cycles.

For a component with geometrical discontinuities, such as holes, cut-outs, notches and fillets,
neither the stress nor the strain at the notch root is under control. Instead, the remote stress or strain
is prescribed, while the local stress and strain are governed by the geometry of the discontinuity
and the behaviour of the material. In this case both strain ratchetting and mean stress relaxation
occur simultaneously. As ratchetting depends on the existence of a nonzero mean stress, it can be
anticipated that the local mean stress will gradually relax, and that eventually the stress-strain loop
will stabilize with a zero mean stress(Wang and Rose, 1998).

€ G Norminal stress s
/\/\/\/ t t :
C [+ o
a. b. c.

Figure 1: Elastoplastic deformation behaviour subjected to (a) constant cyclic strains (b) constant
cyclic stresses and (c) remote constant nominal cyclic stresses.

Strain ratchetting could have a significant bearing on the prediction of structural integrity in
terms of fatigue life and excessive plastic deformation. Figure 2 shows a block diagram of a fatigue
prediction model using the local strain-based approach. Here, the strain-life curve is determined
experimentally using smooth specimens, under fully-reversed straining. This curve serves as a
look-up table, and if the fully-reversed strain range at a notch root can be determined (using Neuber
(1961) rule, Glinka (1985) method, or an FE analysis) then the corresponding fatigue life can be
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looked up from the curve. In practical problems, however, the remote stress amplitudes often vary
from cycle to cycle and the cycles are not fully reversed, resulting in a nonzero mean stress. This
remote mean stress leads to a nonzero local mean stress. The current engineering practice is to
lump the effect of the nonzero mean stress into a factor and obtain an equivalent (fully-reversed)
strain range which is then used to determine the corresponding fatigue life from the strain-life
curve. The damage caused by such a cycle can then be accumulated by using a damage law such
as Miner’s linear rule. In determining the local stress and strain, the cyclic stress-strain behaviour
is required, no matter which method is employed. While in practice materials may experience
a considerable amount of transient cycling, especially in low cycle fatigue, the currently used
cyclic stress-strain curves reflect only the steady-state response. Although this discrepancy is
partially compensated by introducing a mean-stress factor, it introduces more uncertainty in the
life prediction model.

Figure 2: Block diagram for fatigue life prediction model

The transient stress—strain behaviour of the material described is not new (see Landgraf (1970),
for example) but quite recently, research activities in this area have gained momentum probably
because of (a) the rapid development in numerical techniques and computing hardware has made
it possible to adopt more realistic constitutive models to improve life predictions, and (b) the ever
increasing demand on reliability for high risk components such as aeronautical structures and
nuclear facilities has made it necessary to search for more accurate material descriptions.

As a more general description of cyclic plasticity, a model for strain ratchetting should be
capable of predicting the plastic strain in each branch of a cycle which leads to unclosed hysteresis
loops, as well as the isotropic hardening and the general shape of the stress—strain loop. One of
the difficulties in doing this is that the ratchetting strain is typically a small quantity in each cycle,
and it may be transient or stable, depending on the type of material, temperature, the stress range
and the magnitude of the mean stress.

From the viewpoint of metal physics, isotropic strain hardening can be interpreted as a result of
the interaction of dislocations with precipitates, solid solution atoms, grains, cells, and subgrains,
and can thus be approximately represented by a scalar hardening variable. In contrast, kinematic
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hardening is a manifestation of existence of back stresses on the slip plane in the slip direction.
It is thus orientation dependent and must be represented by a vector or tensor Stouffer and Dame
(1996). The modelling of kinematic hardening can be traced back to the work of Prager (1949),
in which the kinematic hardening is described by a back stress which is proportional to plastic
strain. This mode] has gained wide acceptance and application especially in the analyses of metal
forming, because of its simplicity, but it does not correctly describe the nonlinear dependence of
stress on plastic strain. Refined models were subsequently developed by, among others, Besseling
(1958), Armstrong and Frederick (1966), Mroz (1967), Krieg (1975), Dafalias and Popov (1976),
and Cernosky and Krempl (1980). These models can be conveniently termed as classical, with
the main attention directed at describing the cyclic behaviour, without emphasizing ratchetting.
Indeed, most of the classical models are not suitable for predicting ratchetting, as investigated by
Inoue et al. (1989) and Inoue et al. (1991).

Chaboche and Nouailhas (1989a) documented experimental evidence of ratchetting under uni-
axial and multiaxial loading conditions. In terms of the magnitude of mean stress relative to stress
range, two types of loading conditions are distinguished: quasi-reversed, for which the mean stress
is very small comparable to the stress range, and quasi-repeated, for which the mean stress is com-
pared to the stress range. Based on experiments performed on various materials, several conclu-
sions have been drawn for the quasi-reversed loading, assuming there exists a nonzero mean stress
and nonzero inelastic strain range:

e there is always some transient ratchetting;
o shakedown may take place after a certain number of cycles;

e the transient ratchetting increases when the mean stress is increased, keeping the stress range
constant;

e for sufficiently high mean stress, shakedown could be replaced by a continuous ratchetting,
with its rate dependent on the magnitude of the mean stress;

e the transient ratchetting increases when the stress range is increased.

Chaboche and Nouailhas (1989b) investigated the modeling possibilities of several linear and
nonlinear-kinematic hardening rules in the frame work of time-independent plasticity. All the
models are based on three or four back stresses, with the first two obeying the nonlinear-kinematic
rule, and the third one obeying either linear- or nonlinear-kinematic rule. A fourth back stress,
obeying either a generalized Prager rule or a rule proposed by Rousselier et al. (1985), could
optionally be introduced. It has been demonstrated by Chaboche and Nouailhas (1989b) that the
model proposed by Rousselier offers the best compromise.

Jiang and Sehitoglu (1996a,b) investigated ratchetting occurring in steel 1070 for railroad ap-
plications. It has been observed that it is not always true that ratchetting occurs in the direction of
nonzero mean stress, even for proportional loading. A threshold term has been introduced to an
Armstrong-Frederick type constitutive model.

Motivated by the requirement to accurately compute the plastic energy dissipation in a load
cycle, Xia and Ellyin (1991) studied ratchetting under out-of-phase cyclic loading for low alloy
carbon steel. An extra hardening phenomenon has been observed in addition to the anisotropy
due to the plastic deformation. Xia and Ellyin (1994) studied the biaxial ratchetting under strain
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or stress-controlled axial cycling with constant hoop stress using thin-walled tubular specimens of
304 stainless steel. In axial strain-controlled mode ratchetting was observed in the hoop direction,
and under stress-controlled mode ratchetting was observed in both the hoop and the axial direction.
A two surface modelDafalias and Popov (1976) has been used to simulate the results, but different
evolution rules have been adopted for the monotonic loading and the plastic reloading mode.

Within the rate-independent framework, there are basically two approaches in attempting to
describe the cyclic stress-strain behaviour. In the first (Mroz, 1967), the essentially curvilinear
stress—strain relation is linearized, just like in uniaxial loading the stress-strain curve can be rep-
resented approximately using a number of straight line segments. The linearization results in a
series of yield surfaces, each with its own centre and size. The direction of plastic flow is still gov-
emned by the normal to the current yield surface. The yield surfaces cannot intersect, but they can
consecutively act in contact and move together. The direction of the movement of the current yield
surface is such that at the point of contact the current (and others inside it) and the subsequent yield
surface have the same normal. This model can correctly describe the nonlinearity of the stress—
strain loops, particularly under cyclically stable conditions, and the cyclic hardening or softening
of the material with asymptotic plastic shakedown. It does not, however, predict ratchetting at all.

Dafalias and Popov (1976) proposed a similar model but with only two surfaces, with one
acting as a yield surface and the other a limiting surface analogous to the subsequent yield surface
in the Mroz model. The translation rule for the yield surface, which characterizes the kinematic
hardening, can be specified independently, while that for the limiting surface is determined by the
requirement that the two surfaces must have the same outward normal at contact. By contrast to
the Mroz model, this model requires only two surfaces, and is thus much simpler to identify and
more economic to implement in numerical procedures. The continuously varying plastic modulus
employed would allow the description of a smooth elastic-plastic transition. A similar two surface
model has been studied by Krieg (1975).

The second class of constitutive models for rate-independent cyclic plasticity is characterized
by the explicit specification of a translation rule for the back stress through differential equations.
The classical Prager (1949) model, for instance, can be expressed as X = k€&, giving a linear
relation between the back stress X and the plastic strain €”. By employing appropriate differential
equations for the back stress, it is possible to predict the nonlinear behaviour of the cyclic stress-
strain loop and strain ratchetting, as demonstrated by the Armstrong-Frederick (Armstrong and
Frederick, 1966) model. The advantages of this model are that each back stress can be described
by just two material constants and these constants can be determined from the stable cyclic stress—
strain curve. In the following the A-F theory is first outlined, and it is then studied in more detail
for the modelling of ratchetting of aluminium 7050.

In this report, the strain ratchetting/mean stress relaxation phenomena are documented for
aluminium 7050. Strain- and stress-controlled experiments have been conducted under tension-
compression loading using specimens with uniform gauge sections. The framework of constitutive
theories for cyclic plasticity is reviewed, and an Armstrong-Frederick type model is used to model
the experimental observations.
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2 Experimental Results

The material being considered was aluminium 7050-T7451 which is used for the aft fuselage
stub frames on F/A-18 fighter planes. It has a nominal yield stress of 6, = 483 MPa (70 ksi) and
Young’s modulus of E = 69 GPa (10,000 ksi). The specimens used for the tests are of cylindrical
shape with a uniform gauge section having a diameter of 12 mm, as shown in 3. A dynamic
clip gauge, with a gauge length of 12.5 mm and a capacity of +£2.5 mm, was used to measure
and control the axial strain. The experiments were conducted at room temperature on a 100 kN

024
R9s
g
=) £
o0 g 12 mm+/-2.5 mm
gl e Clip gauge
2 @ 012 p gaug

Figure 3: Specimen details

Instron 810 Material Test System and the nominal loading conditions for strain- and stress-control
are listed in Table 1. The actual values attained were slightly different from these because of the

limitation of the servo-control mechanism.
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Table 1: Loading conditions for stress- and strain-controlled tests

. Strain—control | Stress—control (MPa)

Test ID | Specimen ID Min T Max | Min Max
1 kple3 0.002 | 0.02

kp1d3pt3 -327 462
3 kp1d13 0.002 | 0.02
0.006 | 0.02
0.008 | 0.02
0.010 | 0.02
0.002 | 0.02

2.1 Mean stress relaxation

Figure 4 shows the results of Test 1, demonstrating the relaxation of mean stress and the
eventual plastic shakedown, under strain-controlled loading with an initial positive mean stress.
It can be immediately seen that the hysteresis loops shift downwards as cycling progresses, and
stabilizes after a certain number of cycles (in this case, about 200). At the steady state, the stress
cycles become symmetric, with an amplitude of 6, = 437 MPa. A closer examination of the loops
reveals that although each hysteresis loop shifts downward as a whole, the amount of shift differs
at different strain points. In particular, the stress at the lower strain limit decreases faster than that
at the upper strain limit. In effect, this means that for the prescribed strain range the stress range
increases, or the material (isotropically) strain-hardens. Figure 5 plots the relation between the
half strain range and the number of cycles, which indicates that the isotropic hardening reaches
saturation after about 60 cycles, or an equivalent plastic strain of about 0.72, as each half cycle
incurs a plastic strain of approximately 0.0059.

Figure 6 demonstrates the reduction of mean stress as the cycling progresses. It is apparent
that the mean stress reduction is rapid in the first few cycles, but the rate of shakedown decays
rapidly. After 60 cycles, the mean stress reaches 3 MPa, but it takes another hundred or so cycles
before it reaches zero.

2.2 Strain ratchetting

Figure 7 shows the results from the stress-controlled test, Test 2, which demonstrate the pro-
gressive straining of the specimen as cycling progresses. The asymmetric stress cycle (—327—
463) can be viewed as a fully-reversed cycle (the primary load) superposed on a constant mean
stress (the secondary load), and the amount of strain ratchetting in a cycle is determined by the
magnitude of the mean stress and the range of plastic strain. Geometrically, the forward and back-
ward branch of the hysteresis loop are different due to different amount of plastic straining.

As the underlying mechanism is the same for mean stress relaxation and strain ratchetting,
subsequent discussions will be focused on the former, but the formulation is readily applicable to
the latter.
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2.3 Effect of strain range on ratchetting

In Test 3 (see Table 1) similar loading condition as that in Test 1 was applied, except that the
strain range was varied by increasing the lower strain limit from 0.002 to 0.01 while keeping the
upper limit fixed at 0.02. The detailed loading schedule is as follows,

e Step 1: 150 cycles at a strain range of 0.002~0.02

Step 2: 100 cycles at a strain range of 0.006~0.02
5 e Step 3: 100 cycles at a strain range of 0.008~0.02

Step 4: 100 cycles at a strain range of 0.010~0.02

Step 5: cycling until failure at a strain range of 0.002~0.02.

Figure 8(a)-8(d) present the cyclic responses from these tests. Clearly, mean stress relaxation
occurs only when there is plastic deformation in a cycle, and the range of the plastic strain dictates
the rate of relaxation. In Figure 8(a) the plastic strain range is 0.018 and full relaxation is achieved
in about 150 cycles, while Figure 8(d) shows hardly any relaxation as the cycles are essentially
elastic. Figure 9 illustrates the hysteresis loops at load Step 5, which is the same as Step 1. It
should be noted that the hysteresis loops did not immediately reach the steady state, although the
material has already undergone a few hundreds of cycles at various strain levels. This is due to the
negative mean stress induced when the applied load changes to a higher magnitude.

Figure 10 shows a comparison of mean stress relaxation for Test 1 and different loading steps
in Test 3. Clearly, full relaxation of mean stress can only be achieved if there exists sufficient
plastic strain in each cycle. For cycles with negligible plastic strain, the mean stress essentially
remains unchanged, as indicated by the results of Test 3, Step 3 and 4. It is interesting to note the
slightly negative mean stress for load Step 5, which then relaxes to zero.

Figure 11 presents the cyclic isotropic hardening characteristics. It should be noted that since
Test 3 Step 5 was performed after all the cycles in Step 1, it can be viewed as a continuation of
the hardening curve for Step 1. Obviously the isotropic hardening has essentially saturated after
60 cycles in Step 1.

3 Framework of Constitutive Models

In the following, the discussion is limited to time-independent structure of constitutive theo-
ries, which are appropriate for modelling the deformation behaviour of most metallic structural
alloys at room temperature. In this case, small-strain plasticity theory assumes that the total strain,
€, can be decomposed into an elastic part £° and a plastic part €7,

e=¢°+¢°, 1)
and the stress is related to the elastic strain through the generalized Hooke’s law,

c=E:(e—¢€P). ?)
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Figure 8: Comparison of mean stress relaxation under different strain range
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Figure 11: Comparison of cyclic strain hardening for different strain range

Here, the bold symbols represent tensorial quantities, and “:” signifies the scalar product, x : y =
x;;yij (repeated indices imply summation). E is the fourth-order tensor of elasticity.

Let G, be the uniaxial yield stress, and R an internal variable describing isotropic hardening,
then a yield surface can generally be described by
f=¢(6-X)—R—0,=0. 3)

Here, the isotropic hardening parameter R can be expressed as a function of the equivalent plastic
strain p, i.e.
R=R(p),

with p defined through

2 1/2
p= [—é” : i-:p] . (€))]
3
In the above, and henceforth, the superposed dot “.” signifies the differentiation with respect to a
time-like variable, as the real time is irrelevant for rate-independent materials.

In Eq. (3) X is known as the back stress tensor, and it plays the key role in the modelling of the
kinematic hardening behaviour of the material. Indeed, the earlier work on kinematic hardening
by Prager (1949) is given by

X =k e? (5)

This simple model has been widely used to describe the Bauchinger effect observed in exper-
iments, and for solving metal forming problems, but because of the linear relation between X
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and €7, it cannot qualitatively reflect the curvilinear nature of kinematic hardening as sketched in
Figure 1.
For Armstrong-Frederick type of models, the evolution rule for X can be given explicitly as

X= 'i‘klép ~ ko Xp 6)
where k; and k; are material constants.
The direction of the plastic flow is determined by the normality rule, i.e.,
& =Ni Q)

where N = df /00 is the normal to the yield surface.

Using Eq. (4) and (7) we obtain the relation between the equivalent plastic strain rate p and
the plastic multiplier A

5 1/2 9 12
l') = (gép : Sp) = (’3—N : N> A (8)

where A is to be determined using the consistency condition f = 0.

In addition, the following relations hold true
p>0, pf=0andpf=0 ' ®

for plastic deformation.

The plastic multiplier A in Eq. 7 can now be determined by applying the consistency condition,
i.e., that the stress state must lie on the yield surface,

- _af‘. of  , OR,
f_0_5;.6+ﬁ.x+$ 10)
Noting that df/d6 = —df/dX, and denoting dR/dp = R', we get
. 1 .
A=< sN:6> 1D
where “< . >” denotes the MacCauley bracket, i.e.,
1
<u>= E(u-i- u|)

and the hardening modulus £ is given by

5 1/2

13
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3.1 J, theory

The derivations presented above is applicable to a general yield function ¢. In the case of the
von Mises yield criterion, ¢ = J;, the above expressions can be simplified. First we note that the
back stress as defined in Eq. 6 is a deviatoric tensor if plastic incompressibility applies. This is
evident by considering the trace of X in the equation. As a deviatoric tensor, we may use X to
denote the back stress as well as its deviatoric tensor. Thus, if the deviatoric stress tensor is given
by S, we have

1

0=r(0-X)= |3(5-X):(5-%)|" 13)

as the yield function, and the differentiation with respect to ¢ gives

_9of _oh_38-X (14)

N 96 o6 2 b

Using this expression for N, we get

3
N'N_E (15)

Thus, Eq. (8) and (12) can be simplified, respectively, to
p=A
and
h=k —kX:N+R.

In the following, only J, theory will be considered.

3.2 Isotropic hardening rules

In the above discussion, the isotropic hardening has been assumed to be a function of the
equivalent plastic strain, but the explicit form of R = R(p) has not been specified. As an indepen-
dent hardening mechanism, the isotropic hardening rule can be selected without reference to the
kinematic hardening rule. For isothermal plastic deformation, Chaboche (1986) suggested that the
following form can be used

dR = b(R;— R)dp, (16)

where R; and b are two material constants. This equation states that irrespective of the kine-
matic rule and the loading condition (symmetric or unsymmetric), the internal stress R varies as
a function of the accumulated equivalent plastic strain p. Using experimental data for steel 316,
Chaboche (1986) has shown that the the ratio of R/R; can indeed be expressed as a function of p
only.




DSTO-RR-0153

3.3 Model Identification

In order to determine the material constants in the model from experimental data, the model
description given above can be recast into the form for uniaxial loading where G;; 1 =0 except
G = 613 # 0. Adopting the assumption of plastic incompressibility, we have &’ = &f #0,85, =

&5, = —3¢7 which gives the equivalent plastic strain rate as p = \/%¢7 : €° = |¢P|. Further, as

the back stress X is a dev1atonc tensor, we have Xj; =X and X = X33 = ———X And similarly,
Su = 30 S = 833 = —;o Using these expressions in Eq. (3), the yield surface is given by

=|o— -X |. By taking 3X as the new back stress but still denoting it as Z, we get the following
set of equauons for the model in uniaxial loading,

f = lo-Z|-R(p)—0cy=0 a7n
p = %<V6> (18)
h = %kl—szz (19)
Z = ktP —kZ|eP| 20)

where v = sign(6) = £1, depending on the direction of the plastic fiow. Let the initial values for
plastic strain and the back stress be €5 and X at the beginning of each half cycle, then the above
uniaxial model can be integrated to give

Z(eP)=v k' (Zo v— )‘V’”(""eﬁ), @1)

where k; and k, are two material constants to be determined experimentally. Obviously, the non-
linear dependency of back stress on plastic strain is introduced by the second term, which decays
as the relative plastic strain €” — &] increases. For sufficiently large €7 — g}, Z saturates to Vk; /k;.

Once the back stress in known, the corresponding stress can be determined from the yield
criterion

c=Z+V(R+o0y) (22)

1t should be mentioned that the above model applies to stabilized cycles as well as transient ones.
In a stable cycle, the isotropic variable reaches its maximum value of R;, and the maximum and
minimum values (Cpax,Emax) a0d (Opmin, Emin) are all constant during a cycle. Furthermore, the
plastic strain at the end of one excursion (the loading branch, say) will be the initial value of the
next one (the unloading and reloading branch). From Eq. (21) the maximum and minimum back
stress can then be expressed as

Znee =5+ (Zoin— ) e~ Helhereh) @3
Zoin =R+ (Znar+ ) 2P @4

Denoting the plastic strain range as Ae? = ehax — €P ., the stress range as AG = Gpgx — Opin, and
using the fact that

Omax = Zmax+Rs+ Gy, (25)
Omin = Zmin—Rs— Gy, (26)

15
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Eq. (23) and (24) can be solved to give the relation between the half stress range and half strain
range under stabilized cycling,

AgP
—= Emh(k27)+cy+Rs' 27

The significance of the above equation is that it provides a means for determining the material
constants k; and k; using the cyclic stress—strain curve, provided the isotropic parameters R; and
b have already been determined.

To determined R; and b, we need experimental data which represent a relation between the
cyclic stress range and the accumulated equivalent plastic strain. Such data should ideally be
acquired through fully-reversed strain-controlled tests. In absence of such data, we used the data
given in Figure 5 as a first approximation, which gives a relation between the stress range and the
number of cycle. Integrating Eq. (16), we get

R =R,(1—el~?P)) (28)

where the equivalent plastic strain can be approximated (by assuming that the plastic strain range
is constant) as p = NAe?, with Ae? the plastic strain range in each cycle and N the number of
cycles applied. Using this relation and assuming that the kinematic hardening is negligible, we
arrive at the following equation between stress range and the number of cycles,

% = Gy + R(1 —e~oN) (29)
Fitting the above equation with the data given in Figure 5, we get § = 402+ 31.0(1 — e!27),
which corresponds to R, = 31.0 MPa and b = 12.0.

With R; and b thus obtained, the constants k; and k; in Eq. (27) can then be determined from
the cyclic stress-strain curve, such as the one shown in Figure 12 which presents the cyclic data
from experiments conducted at McDonell Aircraft Company (MCAIR), together with some points
obtained from the current study at steady state. For comparison, some data from the first cycle are
also plotted. Evidently the cyclic stress-strain data are consistent among different sources, and as
the data from MCAIR data covers a wider strain range it will be used to determine the material
constants.

Figure 13 shows the result of a nonlinear curve-fitting using the model with a single back
stress. The intersection at zero plastic strain range gives the yield stress as 307 MPa which also
includes the contribution from the saturated isotropic hardening, and the material constants are
determined as k; = 73970.0 and k; = 560.0. Evidently, the single back stress model can only
accurately predict the stress-strain relationship when the strain range is small. In particular, it
cannot correctly describe the continuing hardening feature when the strain exceeds 0.01, as shown
in Figure 12, because the kinematic hardening term saturates at about Ae/2 = 0.006, Figure 13,
and the elastic strain is approximately 0.004.

To extend the applicable strain range, multiple back stresses can be introduced into the model,
with each back stress evolving according to the same rule given in Eq. (6). Following similar
derivation to that in Eq. (23 - 26), it can be proven that under uniaxial loading the relation between
the cyclic stress and strain range can be given as

Ao kY
Y

i) Ae?
i tanh (ky%) +R,+0,, (30)
2
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where the material constants can be obtained from the same test data in a similar way as above.
Figure 14 shows the curve fitting using the above model and the material constants are listed in

Table 2.

In the following section, the above material models, both with a single back stress and multiple
back stresses, will be used to simulate the mean stress relaxation under strain controlled cyclic
loading.

500 0 1) ) 1
450
&
S 400 -
g 350
%)
<
(]
§o 300 r
2 250 First cycle, Test3 + .
5 Steady state, Test3 X
« 200 First cycle, Test1 X .
= Steady state, Test1 0O
150 Cig9 data —— J
100 4
50 .
0 1 1 1 1
0 0.005 0.01 0.015 0.02 0.025
Half strain range Ag/2

Figure 12: Cyclic stress-strain curve from various sources

4 Numerical Results

4.1 Single back stress model

Figure 15 presents the numerical results obtained from the model given in Section 3.3. For
comparison, the experimental results for the first two cycles are also plotted. It can be seen from
the figure that the model can well capture the general features of the hysteresis loops, such as the
sign of the curvature and the general shape. A qualitative description of the progressive relaxation
of the mean stress is also achieved, although the initial rate of relaxation is seen to be much higher
than the experimental results. As mentioned earlier, for the single back stress model the kinematic
hardening saturates quickly and beyond a certain strain the back stress assumes its maximum value
of k; /ky. This effect, which is clearly demonstrated in the figure by the initial loading branch,

17




DSTO-RR-0153

500 L ] ] 1 ) T
A O
450 o) -
< 400 -
[a W
= 350 1
N
8 300F .
) ¢
g 250 t+ Clg9data © .
o Curve fit with one back stress
£ 200 -
‘;; 150 & = Btanh(k28) +R;+ o, .
100 .
50 -
0 i L 1 1 1 1
0 0.002 0.004 0.006 0.008 0.01 0.012 0.014

Half plastic strain rangeAe? /2

Figure 13: Material constants for kinematic hardening models with one back stress
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Figure 14: Material constants for kinematic hardening models with three back stresses
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directly leads to the subsequent loops to shift downwards and contributes to the inaccuracies in the
prediction of stress relaxation rate.

500
400 e &
300 -
200 L i -
< S 7
o-l ."‘,..”.’ .::’,y
= 100 |
(e}
©v ," Rete
g:) 0 /’,,”’l 4 7 ]
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-100 e # :
-200 | g ky=64010., ky=417. -
-300 | 2 _ Test 3, step 1 -~
Numerical, one back stress
_400 1 1 1 L 1 [l 1 1 1

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02
Strain €

Figure 15: Numerical results for mean stress relaxation under strain-controlled cyclic loading

4.2 Multiple back stress model

It can be seen from Figure 15 that although the constitutive model presented in the previous
section can capture the essential features of the cyclic loading such as the nonlinearity of the
hysteresis loop and the progressive relaxation of the mean stress, it has two deficiencies, i.e., it
does not offer a smooth transition from elastic to plastic deformation, and it is only valid for small
strain ranges. From Eq. (21) we can see that the slope of Z with respect to g, is given by

“z _ (k1 — by Zg)e V(& 50)

5 €2Y)

Therefore, the slope at elastic-plastic transition is proportional to k;, which is generally smaller
than the elastic modulus E, thus leading to an undesirable abrupt change of slope. In addition, the
model with a single back stress has a limited strain range over which it is valid. Beyond this range
the kinematic hardening will saturate to a constant value, as indicated in Eq. (21). To overcome
this limitation, Chaboche (1986) suggested that muitiple back stresses could be introduced, each
evolves according to a similar rule as the one given in Eq. (6),

7 =er — i) z)e?) (32)

19
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where i = 1,---,m, and m is the number of back stresses. For proportional loading the above
differential equation can still be integrated to get similar expressions as that given in Eq. 21),

() (0 i
z =V%+ zo,--v% exp™4 - (33)
) ky

and the effective back stress is simple the sum of these components, i.e., Z = ¥ Z;.

Figure 16 presents the numerical result obtained from a model with three back stresses, with
the material constants listed in Table 2. Clearly, the model with multiple back stresses offers a
smoother transition between the elastic and plastic deformation, and it improves the general shape
of the hysteresis loop in comparison to the the experimental data.

500 T T T

400 o ' = -

300 . e Lo

200

100
0

Stress ¢, MPa

-100
-200
-300
-400
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Three back stresses
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0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02
Strain &

Figure 16: Numerical results for mean stress relaxation under strain -controlled cyclic loading.
The parameters used are given in Table 2

k} 639300 | R, 31.0
K 99800 | b 120
K 66200
K 7340
K 7280
B 73.0

Table 2: Parameters for the constitutive model with multiple back stresses
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4.3 Notch root stress

To use the above numerical model of cyclic plasticity to determine the fatigue life of compo-
nents, it is necessary to consider the effect of stress concentration. In the following, a procedure
for the determination of notch root stress and strain, based on Neuber’s rule, is devised. Given the
remote stress increment As and strain increment Ae, Neuber’s rule states,

AcAe = K?AsAe (34)

where K; is the stress concentration factor, and Ac and At are the notch-root stress and strain
increment, respectively. They are to be determined from Eq. (34) and the constitutive model. To
derive a constitutive equation in total stress and strain, we denote As = S — So and Ae = e — ¢p, with
So and eg the remote stress and strain, respectively, at the previous turning point in the cyclic load
history. Correspondingly, the local stress and strain increments are AG = 6 — 6o and A€ = € — &,
respectively. Using these notations, the Neuber’s rule can be rewritten as

(e~£0)(6 — Go) = KZ(s— s0)(e — €0).- (35)

Since the total stress is related to the total elastic strain through Hooke’s law

c=E(e—¢P), (36)
we have
(e —€o)(Ee — E€? — 6¢) = K2(s — so) (e — e0), 37
which can be solved to give
1 Co 1\/ Go\ 2 Go
== Py 0 Z =) - e~ K2(e—en)2
e 2(eo+s +E)+2v (eo+eP+E) 4[eoep+E£o K¥e eo)], (38)

where v = £1 depending on the direction of the plastic flow.

Using the above expression for € in Eq. (36), the yield criterion can be expressed in terms of
the current plastic strain €7,

&) = lo(e?)~Z(e?)| - R(p) — o
= V[o(e) - Z(e")] ~ R(p) — 0y = O, (39)

where the second equal sign is established by the fact that for the loading branch yielding can only
occur when ¢ > Z, and for the unloading branch it can only occur when Z > 6. This nonlinear
equation can be solved using the Newton method. When the plastic strain €7 is determined, the
strain can then be obtained from Eq. (38) and stress ¢ from Eq. (36).

Applying Newton’s method to Eq. (39), we get

p _ep_ L (&5)
8Ic-H 8k d f /dSp (40)
where df/de? is evaluated at €7 = €, and can be expressed as
df do dZ dR
@—V(&Taa) K3 @D
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and the expressions for do/de” and dR/deP can be derived explicitly as

do E 1 €? +0o/E — 3¢

—_— = ——4V=

dep 2 2\/(e0+€P +Go/E)? — 4[egeP + Gogo/E — K2 (e — €0)?]

dR —bp

Ee_l’ = VbRoe . (42)

where the relation dp = vde? has been used in the derivation of the second equation. The derivative
% is given in Eq. (31) previously.

The algorithm for the above calculation is listed below

For each loading/unloading excursion Ae=e—e¢g

Divide the remote strain range Ae into m parts
For each remote strain e;

Calculate yield function f

If f£>0 then

loop: Calculate d%,é and f

Py= L _
Calculate d(e?) CHGICIR
Update: &, =g, +d(eF).

de?

&1 <107° exit.
k+1

goto loop
end if

Calculate stress and strain using Eq. (38) and (36)

If

Figure 17 presents the notch root hysteresis loops obtained using the above algorithm. The
stress concentration factor K; is assumed to be 3.0, and the applied remote strain history has a
minimum and maximum of -0.0001 and 0.004, respectively. This result clearly shows the feature
of combined strain ratchetting and mean stress relaxation, consistent with the results reported by
Wang and Rose (1998).

Assuming elastic-perfectly plasticity and prescribed stress limits, it is possible to derive an
explicit relation between the ratchetting strain in each cycle and the material constants. For the
model with a single back stress, Lemaitre and Chaboche (1990) has shown that

_ly /.~ (et )

de? =

ke o (k1/k2)? — (Cmax — ©y)?

which shows that the maximum ratchetting is achieved when 6, = —0y. When isotropic hard-
ening is considered, such an explicit relation cannot be obtained.

43)

4.4 Discussion

In the previous sections, the cyclic stress—strain behaviour of aluminium 7050 has been stud-
ied experimentally and numerically. It has been noted that under strain-controlled conditions, a
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Figure 17: Numerical results for mean stress relaxation and strain ratchetting at notch root. The
material constants are listed in 2.
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nonzero mean stress will progressively approach zero, provided plastic deformation is induced in
each cycle. By nature, this phenomenon is transient, as stable cycling can usually be achieved in
a certain number of cycles. In this sense, its influence on the fatigue life of a component may be
limited, especially for high cyclic fatigue. However, if the loading history includes occasional or
periodic overloading, then taking into consideration of ratchetting would provide a more accurate
description of the material stress—strain response.

Under stress-controlled condition, the situation is more complex. The strain ratchetting could
be transient or continuous depending on the magnitude of the mean stress. Therefore, if the defor-
mation is unconstrained structurally, and if there exists a high enough mean stress, the excessive
plastic strain alone can lead to the failure of the component. This could be the case for components
under combined torsional and tensile loading, such as the shaft of a helicopter

For most components the loading at critical locations, such as a notch root, is neither stress-
nor strain-controlled. In this situation, the strain ratchetting will always be transient because the
relaxation of the mean stress eventually eliminates the non-zero mean stress, which acts as the
driving force for strain ratchetting. It should be pointed out that for critical locations with a low
stress concentration, the effect of strain ratchetting would be more severe, if it exists at all, because
in this case the plastic deformation is less constrained.

Anideal constitutive model should have the following characteristics: (a) be able to predict the
shape of the hysteresis loops consistently; (b) be able to predict the rate of ratchetting/relaxation;
(c) the material constants involved in the model should be few and can be determined easily.
These seemingly simple requirements are actually hard to meet. For instance, while it is easy to
reproduce the shape of one particular hysteresis loop by adjusting parameters, it is much more
difficult to regenerate all the loops consistently. In the model discussed above, it has been noted
that the ratchetting rate is too high for the first few cycles. This problem can be traced to the
value of k; which represents the evanescence rate of the dynamic recovery that dictates the rate of
ratchetting. One remedy is to introduce a threshold to k, to moderate the dynamic recovery (see
Chaboche, 1991; Ohno, 1997, for example.). This will be addressed in future work.

5 Conclusions

The strain ratchetting behaviour of aluminium 7050 alloy has been studied experimentally and
numerically. Under asymmetrical strain-controlled conditions test results demonstrate mean stress
relaxation while asymmetrical strain-controlled tests show strain ratchetting, both characterised
by the non-closure of hysteresis loops. While the mean stress progressively approaches zero, the
strain ratchetting could continue at a constant rate for a sufficiently large mean stress and a non-
zero plastic strain range.

The constitutive theory of nonlinear kinematic hardening has been investigated with a view
to establishing a simple but effective model to represent the transient behaviour, to be incorpo-
rated into existing software such as CI89. A model with three back stresses has been established,
which offers a reasonably accurate description of the cyclic behaviour. Using the existing experi-
mental data, the material constants for the model have been determined, and the numerical results
correlates well with the experimental ones.

A numerical procedure has also been devised for the calculation of the notch root stress and
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strain using the current constitutive model. The numerical results show the expected feature of
combined strain ratchetting and mean stress relaxation.

25




DSTO-RR-0153

26

References

Armstrong, P. and Frederick, C. (1966). A mathematical representation of the multiaxial

bauschinger effect. Technical report, CEGB Report: RD/B/N731, Berkeley Nuclear Labora-
tories.

Besseling, J. (1958). A theory of elastic, plastic and creep deformations of an initially isotropic
material showing anisotropic strain hardening, creep recovoery and secondary creep. ASME
Journal of applied Mechanics, 25:529-536.

Cernosky, E. and Krempl, E. (1980). A theory of viscoplasticity based on infinitesimal total strain.
Acta Mechanica, 36:263-289.

Chaboche, J. (1991). On some modifications of kinematic hardening to improve the description of
ratcheting effects. International Journal of Plasticity, 7.

Chaboche, J. and Nouailhas, D. (1989a). Constitutive modeling of ratchetting effects-part i: Ex-
perimental facts and properties of the classical models. ASME Journal of engineering materials
and technology, 111:384-392.

Chaboche, J. and Nouailhas, D. (1989b). Constitutive modeling of ratchetting effects-part ii:
Possibilities of some additional kinematic rules. ASME Journal of engineering materials and
technology, 111:409-416.

Chaboche, J. L. (1986). Time-independent constitutive theories for cyclic plasticity. International
Journal of Plasticity, 2(2):149~188.

Dafalias, Y. and Popov, E. (1976). Plastic internal variables formalism of cyclic plasticity. ASME
Journal of Applied Mechanics, 43:645-651.

Glinka, G. (1985). Calculation of inelastic notch-tip strain—stress histories under cyclic loading.
Engineering Fracture Mechanics, 22:839-854.

Inoue, T., Ohno, N., Suzuki, A., and Igari, T. (1989). Evaluation of inelastic constitutive models
under plasticity-creep interaction for 2.1/4cr-1mo steel at 600degc. Nuclear Engineering and
Design, 114:295-309.

Inoue, T., Yoshida, F., Ohno, N., Kawai, M., Niitsu, Y., and Imatani, S. (1991). Evaluationof
inelastic constitutive models under plasticity-creep interaction in multiaxial stress state. Nuclear
Engineering and Desgin, pages 1-11.

Jiang, Y. and Sehitoglu, H. (1996a). Modeling of cyclic ratchetting plasticity, part i: Development
of constitutive relations. Journal of Applied Mechanics, Transaction of the ASME, pages 720~
725.

Jiang, Y. and Sehitoglu, H. (1996b). Modeling of cyclic ratchetting plasticity, part ii: Comparison
of model simulations with experiments. Journal of Applied Mechanics, Transaction of the
ASME, pages 726-733.

Krieg, R. (1975). A practical two surface plasticity theory. ASME Journal of Applied Mechanics,
42:641-646.




DSTO-RR-0153

Landgraf, R. W. (1970). The resistance of metals to cyclic deformation. In Achievement of High
Fatigue Resistance in Metals and Alloys, pages 3-36. ASTP STP 467, AM. Soc. for Testing and
Materials.

Lemaitre, J. and Chaboche, J. (1990). Mechanics of Solid Materials. Cambridge University Press.

Mroz, Z. (1967). On the description of anisotropic workhardening. Journal of the Mechanics and
Physics of Solids, 15:163-175.

Neuber, H. (1961). Theory of stress concentration for shear-strained prismatical bodies with arbi-
trary nonlinear stress—strain law. J. Applied Mechanics, Vol. 26:544-550.

Ohno, N. (1997). Current state of the art in constitutive modelling for ratcheting. In Trasaction
of the 14th International Conference on Structural Mechanics in Reactor Technology, Lyon,
France.

Prager, W. (1949). Recent developments in the mathematical theory of plasticity. Journal of
Applied Physics, 20:233-241.

Rousselier, G., Engel, J., and Masson, J. (1985). Etude comparative de models de comportement
pour la simulation d’essais en traction-pression sur tubes en acier inoxydable. In Document
EDF-DER, annexe du Rapport no. 8 du GIS Rupture Chaud.

Stouffer, D. C. and Dame, L. T. (1996). Inelastic Deformationvof Metals. John Wiley & Sons, Inc.

Wang, C. and Rose, L. (1998). Transient and steady-state deformation at notch rood under cyclic
loading. Mechanics of Materials, pages 229 — 241.

Xia, Z. and Ellyin, F. (1991). Nonproportional multiaxial cyclic loading experiments and consti-
tutive modelling. ASME Journal of Applied Mechanics, 58:317-325.

Xia, Z. and Ellyin, F. (1994). Biaxial ratcheting under strain of stress-controlled axial cycling with
constant hoop stress. Transaction of the ASME, 61:422-428.

27




DISTRIBUTION LIST

Analysis of Cyclic Mean Stress Relaxation and Strain Ratchetting Behaviour of Aluminium 7050
W. Hu, C.H. Wang and S. Barter

Number of Copies
DEFENCE ORGANISATION
Task Sponsor
DGTA 1
S&T Program
Chief Defence Scientist
FAS Science Policy 1
AS Science Corporate Management
Director General Science Policy Development 1
Counsellor, Defence Science, London Doc Data Sht
Counsellor, Defence Science, Washington Doc Data Sht
Scientific Adviser Policy and Command 1
Navy Scientific Adviser Doc Data Sht
Scientific Adviser, Army Doc Data Sht
Air Force Scientific Adviser 1
Director Trials 1
Aeronautical and Maritime Research Laboratory
Director, Aeronautical and Maritime Research Laboratory 1
Chief Airframes and Engine Division 1
Authors:
W. Hu 5
C.H. Wang 1
S. Barter 1
L.F. Rose 1
L. Molent 1
D. Graham 1
K. Watters 1
DSTO Libraries
Library Fishermens Bend 1
Library Maribyrmong 1
Library Salisbury 2
Australian Archives 1

Library, MOD, Pyrmont Doc Data Sht




Capability Development Division
Director General Maritime Development
Director General Land Development
Director General C3I Development
Army
ABCA Reports Distribution, Puckapunyal
SO (Science), DJFHQ(L), MILPO Enoggera, Queensland 4051

NAPOC QWG Engineer NBCD c¢/- DENGRS-A, HQ Engineer Centre
Liverpool Military Area, NSW 2174
Establishment Library

Air Force
OIC ASI-LSA, DTA, HQLC
Intelligence Program
DGSTA Defence Intelligence Organisation
Corporater Support Program(libraries)
Officer in Charge, TRS, Defence Regional Library, Canberra
US Defense Technical Information Center
UK Defence Research Information Centre
Canada Defence Scientific Information Service
NZ Defence Information Centre
UNIVERSITIES AND COLLEGES

Australian Defence Force Academy Library Head of Aerospace and
Mechanical Engineering

Deakin University, Serials Section (M List), Deakin University Li-
brary, Geelong, 3217

Senior Librarian, Hargrave Library, Monash University

Librarian, Flinders University

LaTrobe University Library

University of Melbourne, Engineering Library

Newecastle University, Library

University of Sydney, Engineering Library

UNSW, Physical Science Library

Queensland University, Library

Tasmania University, Engineering Library

University of Western Australia, Library
OTHER ORGANISATIONS

NASA (Canberra)

Doc Data Sht
Doc Data Sht
Doc Data Sht

4
Doc Data Sht
Doc Data Sht

= NN e

Pk ek ek femd jemd ek ek e e e




AGPS
OUTSIDE AUSTRALIA

ABSTRACTING AND INFORMATION ORGANISATIONS
INSPEC: Acquisitions Section Institution of Electrical Engineers
Library, Chemical Abstracts Reference Service
Engineering Societies Library, US
Materials Information, Cambridge Scientific Abstracts, US

Documents Librarian, The Centre for Research Libraries, US

SPARES

Total number of copies:

S S Y S vy

62




Page classification: UNCLASSIFIED

DEFENCE SCIENCE AND TECHNOLOGY ORGANISATION 1. CAVEAT/PRIVACY MARKING
DOCUMENT CONTROL DATA
2. TITLE ' 3. SECURITY CLASSIFICATION
Analysis of Cyclic Mean Stress Relaxation and Strain | Document )
Ratchetting Behaviour of Aluminium 7050 Title (9))
Abstract (9)]
4. AUTHOR(S) 5. CORPORATE AUTHOR
W. Hu, C.H. Wang and S. Barter Aeronautical and Maritime Research Laboratory
506 Lorimer St,
Fishermens Bend, Victoria, Australia 3207
6a. DSTO NUMBER 6b. AR NUMBER 6¢c. TYPE OF REPORT 7. DOCUMENT DATE
DSTO-RR-0153 AR 010-989 Research June 1999
8. FILE NUMBER 9. TASK NUMBER 10. SPONSOR 11. No OF PAGES 12. No OF REFS
M1/9/616 ATR98/195 DGTA 28 25
13. DOWNGRADING / DELIMITING INSTRUCTIONS 14. RELEASE AUTHORITY
Not Applicable Chief, Airframes and Engines Division

15. SECONDARY RELEASE STATEMENT OF THIS DOCUMENT
Approved For Public Release

OVERSEAS ENQUIRIES OUTSIDE STATED LIMITATIONS SHOULD BE REFERRED THROUGH DOCUMENT EXCHANGE CENTRE, DIS NETWORK OFFICE, DEPT OF DEFENCE, CAMP-
BELL PARK OFFICES, CANBERRA, ACT 2600

16. DELIBERATE ANNOUNCEMENT

No Limitations

17. CITATION IN OTHER DOCUMENTS
No Limitations

18. DEFTEST DESCRIPTORS

cyclic plasticity constitutive modelling
strain ratchetting mean stress relaxation
aluminium 7050 notch root stress

19. ABSTRACT

The cyclic constitutive behaviour of aluminium 7050 under elstoplastic deformation has been investigated in this
report. Experiments were performed under strain-controlled and stress-controlled cyclic loading, respectively,
with a view to quantify the phenomena of mean stress relaxation and strain ratchetting. To mathematically
describe the experimentally observed cyclic stress-strain behaviour, the framework of constitutive theory for rate-
independent plasticity has been reviewed and the state-of-art development in the field summarised. A detailed
discussion has been presented for a class of constitutive models which uses nonlinear differential equations to
describe the kinematic hardening, using a single back stress or multiple back stresses.

Using the available steady-state experimental data, the material constants in the model have been identified.
A comparison to the experimental results shows that the model can provide very good representation of the
material stress—strain behaviour under cyclic loading, in terms of the general shape of hysteresis loops. A
numerical procedure for determining the notch-root stress and strain from the applied remote stress or strain
has also been developed. The significance of strain ratchetting on the prediction of fatigue crack initiation and
growth life has also been discussed.

Further study is needed to improve the accuracy of prediction in the rate of stress relaxation.

Page classification: UNCLASSIFIED




